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ON THERMOELASTIC STRESSES IN COMPOSITE MEDIA* 

V.M. LEVIN 

The thermoelastic stresses are determined in composites that are a homogeneous and 
isotropic matrix with inclusions of another component of ellipsoidal shape. The 
thermoelastic stresses within an arbitrary inclusion and in its neighborhood are 
determined by using one of the modifications of the self-consistent field method/l/ 
that permits taking account of interaction of the inclusions. An analogous approach 
was used /2/ to determine the stress concentration factor an ellipsoidal inclusions 
in an elastic medium. Within the frameworkofthe same scheme, the thermoelastic 
stresses are found in polycrystal line grains for which the dependenceofthe thermo- 
elastic stresses on the coordinates is due to the difference in orientations of the 
crystallographic axes of the individual grains. 

1. We examine an ellipsoidal inhomogeneity with elastic modulus tensor L1(M,=L,-') and 
coefficient of thermal expansion a, that occupies a domain V in an unlimited medium with the 
thermoelastic characteristics L,(M,= Lo-') and a,. Let the medium be subjectedtoauniform 
change in temperature of @degrees. Because of the difference in the thermoelastic constants 
of the matrix and the inclusions, a stress field a(x). that vanishes at infinity, originates 
in the medium and satisfies the system of equations 

div (J (z) = 0, Rot M (z) c (x) = -Rot a (z) 0 (1.1) 

If the elastic compliance tensors M(r)and the thermal expansion coefficients a(z) are 
represented in the form 

M (Cr) = &f, -+ IMI v (.Z), II%!!1 = M, - M, (1.2) 
a (x) = a, + la1 V (z), la1 =a1 - a, 

where r(x)is the characteristic function of the ellipsoid, then the problem of determining 
the field a (Z)can be reduced to the integral equation 

c (5) = 5 JJ0 (5 - y) 1' (yf(I1~~1 c (y) i_ [al e)dy (1.3) 

ro (z - Y) = ---Lo (16 (z - Y) + G (2 - Y) J%) (1.4) 

G (x) c (Gijkl (r)) = [uik, j: (z)l(ij)(kl)t I = (lijkl) = r)i(kSl)j 

Here I‘,(t- y) is the Green's tensor for the internal stresses in homogeneous medium with 
elastic moduli tensor L, expressed in terms of the Green's tensor of the Lam& equations U(x- 
y) (the parentheses denote symmetrization in the corresponding subscripts). 

Equation (1.3) can be written in the form of the system 

a+ = r0+ ([Ml 0' + [al @), u- = To (IA11 c+ $ [al 0) (1.5) 

where To is an integral operator with the kernelr,(x - y). and I' @* = VFoV is its contraction 
in the domain occupied by the ellipsoid. The first equation in 11.51 determines the stress 
field U' within this domain, while the second is the continuation of the solution outside V. 
For 8 = cord, the stress field in the inclusions will be homogeneous because of the property 
of the Operator r0 to transform constants into constants /3/, and is determined by the expres- 
sion 

e+ = -Q(o)B (0) Ial 0, Q(o) = &(I - P (6)) Lo) (1.6) 

B (0) = (I + Q (@trillI)-' 

The set of Euler angles giving the orientation of the ellipsoid with respect to the lab- 
oratory coordinate system is denoted by awhile P(w)is a constant, quadrivalent tensor depend- 
ent on the geometric characteristics of the ellipsoid and the elastic moduli of the matrix. 
For an isotropic matrix with volume k, and shear elastic moduli p. 
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(1.7) 

where (0+and qt are the harmonic and biharmonic potentials of the ellipsoid at an inner point, 

and Sijkr is the Eshelby tensor (/3/,p.118). 

If the point z is fixed outside the inclusion, then we obtain from (1.5) 

Is- (5) r -LOP- (J-) I>0 n (01) [al (3 (1.8) 

where P-(Z) is determined by (1.7) in which 'p+ and Q' should be replaced by the potentials (II- 
and $- at the exterior point. This expression permits determination of the limit value, from 
outside, for the stress tensor cr-(n)on the inclusion boundary. Using the relationship for 
the jumps in derivatives of the potentials when passing through the boundary 

cP.C - 'pli, -= 4nninj, +ytikf - QliJki = 8nninjnknL 

where ni are components of the unit normal to the surface of the inclusion, we obtain 

a-(n) = L, (P (CO) - K (n)) Lo/% (co) la1 0 (1.9) 

K (n) = (Kijrl (n)) = $ (6iknJnl - * 
3klli- 4P" I”injnknZ ciljcklj 

1 

2. We now examine a composite material consisting of a homogeneous and isotropic matrix 

in which ellipsoidal inclusions of another component are distributed. We consider the ellip- 

soids identical in magnitude but differently oriented in space. We extract the characteristic 
volume of the composite, i.e., the volume with dimensions substantially exceeding the spacing 

between inclusions, but within whose limits the change in the temperature field can be neglect- 

ed. Under these conditions the characteristic volume can be considered unbounded. 

We denote the characteristic function of the domain occupied by the inclusions by V(z) = 

LJ Vi Ca) . Then the integral equation which the stress field a(.~) satisfies in the composite 

will have the same form (1.3). However, this field will now be random because of the random- 

ness of the positions of the centers and the orientations of the ellipsoids. Hence, the ex- 

act determination of the stress becomes a complex problem, and an approximate method based on 

the method of the "effective field" /l/ is used for its solution. 

We fix the point 1:in the domain of an arbitrary inclusion V, and we rewrite the integral 
equation to determine the field o(.z) as follows: 

u (2) = -Q (Wk) Ial@ + u* (4 + Sr, b - Y) v, (Y) [Mls (Y) dY 

s*(z) = J ro (x - Y) v (I; Y) (rM1 CT (y) + la1 e) dy 

V (Xi Y) = u Vj (y)! Z E Vh. 
j#k 

(2.1) 

(2.2) 

The first term in the right side of (2.1) takes ontherole of internal stress sources, 

and o*(z) is the effective field which is determined by (2.2) and takes account of the influ- 

ence of the remaining inclusions in the characteristic volume on the segregated inclusion. 

Let us fomlulate the fundamental hypotheses of the effective field method/l/:l)thechange 

in the field u* (.z) in domains occupied by the inclusions can be neglected; 2) the field 

e*(z) is independent of the geometric characteristics and thermoelastic properties of the 

segregated inclusion. 

The first of these assumptions permits obtaining 

(J (.Z) = B (2) (c*(z)- v (z) [al @), H (z) = B (ok) as x E vh (2.3) 

from (2.1). Substituting (2.3) into the right side of (2.2), we obtain a self-consistentequa- 

tion to determine the random field 

cl* (2) = J ro (CC - y) v (z; Y) B (y) ([Ml u* (y) + lal8) dY (2.4) 

Denoting the operation of taking the average over the ensemble of realizations of the 

random field of inclusions for which the domain V contains the fixed point 5 by symbol (. (Q, 
by taking the average of both sides of (2.4) we find 

(u* (z) I z> = jr, (5 - Y) y (z. Y)(lMl Cc* (Y) Iz Y> + [al@) &/ (2.5) 

y (G Y) = <v (z; Y) B (Y) I z> 

The mean under the condition that the two points (z and y) are fixed is undertheintegral 

sign, and the assumption 2) is used in separating the means. It is logical to consider each 

inclusion to be in the same effective field u*for a homogeneous temperature fieldandalarge 

quantity of inclusions in the characteristic volume. In this case, the conditional means in 
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(2.5) are in agreement, as well as with the quantity a*. Finally, if the domains Vj in the 

characteristic volume form a statistically homogeneous and isotropic field, then the function 

\y (x; y)possessesthe following properties: 

Y (5; y) = Y (I 5 - !/I), Y (0) = 0, Y (w) = c,@>o 

where c1 is the volume concentration of inclusions, and (.). denotes taking the average with 

respect to the set of ellipsoids orientations. Under these conditions the integral in (2.5) 

is evaluated /l/, and we consequently will have 

u* = clQo (B), D id@, D = (1 - clQo [Ml (&J1, Qo = <Qh (2.6) 

Now, substituting the expression for (5 * in (2.3), we find the temperature stress a+ with- 

in an inclusion with the orientation oL 

c+(z) = (c,Qo @),-Q (ok) D (&)D [al 0, x~z V, (2.7) 

Therefore, under the assumptions made the field o+turns out to be homogeneous and to 

depend only on the ellipsoid orientation olr. Exactly as in Sect-l, the result obtained per- 

mits finding the stress in the matrix directly at the inclusion surface 

c-(n) = (~00 <D), + L, (P (wk) - K(n)) .M (@k))D [aI@ (2.8) 

Comparing (2.7) and (2.8) with (1.6) and (1.9) shows that the expression for the thermal 

stresses in one isolated inclusion in the matrix and on its boundary differs from the corres- 

sponding stresses in the composite material by the tensor factorD andtheterm clQ,(B),D [alO 
which takes account of interaction of the inclusions and the statistical characteristics of 
their distribution. For low inclusion concentrations, this interaction becomes negligibly 

small and (2.7) and (2.8) go over into (1.6) and (1.9) as Cl--f 0. 

Letthe inclusions be spherical in the composite material. In this case the tensors P, Q 

and B become isotropic, and (2.7) and (2.8) simplify substantially 

Ui j+ = --C,d (U, - a(l) 06jj (2.9) 

(Jij- (?Z) = ‘/zd [(1 + 2CJ 6ij - 3ninjl (a, - aO) 8 

d = (& + 2 + $)-I, co = I _ c1 

We note that these formulas agree with the expressions for the thermoelastic stresses in 

a spherical composite element with ratio cl'/a between the radii of the inner andouter spheres. 

3. The scheme presented can be used also to determine the thermal stresses in single- 

phase polycrystals. It is impossible to extract the fundamental medium (matrix) in a poly- 

crystal, however, the tensors of the thermoelastic characteristics M(Z) and a(s) that are 
random functions of the coordinates can be written in an analogous form to (1.2) 

(3.1) 

Here V, is the characteristic function of the r-th crystallite (the summation is over 
all crystallites in the characteristic volume), while M(o,) and a(m?) are constant values 

that the quantities M(X) and a(z) take on in a crystallite with orientation o, for the prin- 
cipal crystallographic axes. Such a representation permits, in this case also, consideration 

of each grain as an isolated inhomogeneity in a medium with the elastic compliance tensorM, = 

(M), on which the effective field acts. Considering the grains in the polycrystal to be 
spherical in shape, for simplicity (the consideration of ellipsoidal grains imposes no dif- 
ficulties, in principle), we can write under the same hypotheses for the effective field 

(J (2) = B (ok) t-Q0 a (4 + u* !4h B (4 = (1 + Q&* (qJ)-’ (3.2) 

a* (4 = s ro (5 - Y) B (Y) CM* (Y) (I* (Y) + cc (y) e) &/, 
xc v,, yiz u v, 

r#k 

(3.3) 

where l',,(s - y) is determined by (1.4) for MO = (M),. Finding the conditional mean of both 
sises of (3.3), and considering each grain to be in an identical effective field u*, we obtain 

,n;=_/: (I - Y) ('y (5; Y) u* + 0 (x; Y) 0) dy, x E V,, (3.4) 

I 
r#k 

'J' (x; Y) = (B (Y) M* (Y) I x>, 0 (xi Y) = (B (Y) a (Y) I 5) 
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The properties of the functi.?ns Y and @for homogeneous and isotropic fields M(x) and 
a(z) agree with the properties of the function Y!from composites, i.e., they depend only on 

1 x - y I and 
Y(O)=@,(O)=O, Y+(fif*B),,D--+((Ba), as lx--yyl +“. 

Consequently, we obtain after integration 

s* = Q&0, 5 = (B),-l (Ba)o (3.5) 

Let us note that the quantity B is the effective coefficient of thermal expansion of the 

polycrystals. It can be derived from the more general results of /4/ obtained by using sum- 

mation of perturbation theory series and a strong isotropy hypothesis. 

Now substituting (3.5) into (3.2), we obtain an expression for the thermal microstresses 

in an arbitrary polycrystal grain 

(J (x) = Q& (4 (a - cc (w))> r E v, (3.6) 

which agrees with that found in /5/ by other means. 

As an illustration we compute the themlal stresses originatinginhexagonal polycrystal 

grains for a uniform temperature change. For the crystallite whose principle axes of aniso- 

tropy agree with the laboratory coordinate system, (3.6) yields 

en = uz2 = iv,, + ddu - aL) + 4, ca - a,,p3 (3.7) 

%3 = 1% (ii - a-L) + d,, (a - a,,)] 0, c112 = 0,z = Q = 0 

all + al, = fE 
f ’ 

a,:, = - f_, 
i ’ 

& ~_ fll -I- fl2 
f 

f = f33 (fll -t fld - 2f:,? 
4 

fll = PI f yj- P1 -k ml,. 
2 

f12 = PI - T Pz + m12 

4 
f3S = Pl + 7 PA + m33. PI = 1 i121L” 

Here al and a,, are the principal values of the tensor aij for hexagonal symmetry, and n,j 

are the double-subscript components of the crystallite elastic compliance tensor Mijk, in the 

principal axes of anisotropy. The quantity i1-7 (?iij] is determined by the expression 

Gij = ii&j, C = [Z (d I, -s- d,, L d,,) al + (%i- 4,) a,, Il24, + 2d,, + 4d,, -i- &,I~' 

Misprints executed in analogous expressions in /5/ have been corrected in the formulas 

presented. 

One of the representatives of hexagonal polycrystals is zinc for which /6/ m,, = 0.84, 

ml2 -x 0.05, m13= -0.73, m,,=2.84, ma1 = 2.61 x 10-s m2/kN, al 12.6, cc1 = 57.4 x 10m@oK-1. Calculations using 

(3.7) result in the following values for the thermal microstresses for zinc: 0-lo,, -= H-1 Q* = 

3213 kN/m', +$I,~ = --lj55 kN/m'. These values differ substantially from the quantities 563 kN/m2 

and -477 kN/m' which are obtained by using a simpler model (one isolated grain in the matrix, 

possessing the mean elastic properties of the polycrystal, i.e., for a = (5~,,~ inthenotation of 

this paper). 
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